Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence.
نویسندگان
چکیده
Systematic low-angle and wide-angle x-ray scattering studies have been performed on fully hydrated unoriented multilamamellar vesicles of saturated lecithins with even chain lengths N = 16, 18, 20, 22, and 24 as a function of temperature T in the normal gel (L beta') phase. For all N, the area per chain Ac increases linearly with T with an average slope dAc/dT = 0.027 A2/degree C, and the lamellar D-spacings also increase linearly with an average slope dD/dT = 0.040 A/degree C. At the same T, longer chain length lecithins have more densely packed chains, i.e., smaller Ac's, than shorter chain lengths. The chain packing of longer chain lengths is found to be more distorted from hexagonal packing than that of smaller N, and the distortion epsilon of all N approaches the same value at the respective transition temperatures. The thermal volume expansion of these lipids is accounted for by the expansion in the hydrocarbon chain region. Electron density profiles are constructed using four orders of low-angle lamellar peaks. These show that most of the increase in D with increasing T is due to thickening of the bilayers that is consistent with a decrease in tilt angle theta and with little change in water spacing with either T or N. Because of the opposing effects of temperature on area per chain Ac and tilt angle 0, the area expansivity alpha A is quite small. A qualitative theoretical model based on competing head and chain interactions accounts for our results.
منابع مشابه
Anomalous phase behavior of long chain saturated lecithin bilayers.
X-ray scattering has been performed on fully hydrated unoriented multilamellar vesicles of lecithins with even chain lengths n from 16 to 24 as a function of temperature in chain ordered phases. The longer chain lengths, n > or = 20, show anomalous behavior compared to the shorter chain lengths, n < 20. This report concentrates on n = 24. Although the history and time dependence shows that equi...
متن کاملMolecular Structure and Ordering of Phospholipids at a Liquid-Liquid Interface
Vibrational sum frequency spectroscopy in conjunctionwith interfacial pressuremeasurements provides direct information about the molecular structure of phosphocholine monolayers adsorbed to the interface between D2O and carbon tetrachloride. Monolayers form from breakup at the interface of aqueous phase phosphocholine vesicles. For the saturated, symmetric, dialkylphosphocholines used in this s...
متن کاملMolecular structure of the lecithin ripple phase.
Molecular dynamics simulations of lecithin lipid bilayers in water as they are cooled from the liquid crystalline phase show the spontaneous formation of rippled bilayers. The ripple consists of two domains of different length and orientation, connected by a kink. The organization of the lipids in one domain of the ripple is found to be that of a splayed gel; in the other domain the lipids are ...
متن کاملFluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature.
The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structu...
متن کاملPressure-induced ordering in mixed-lipid bilayers.
Isothermal application of hydrostatic pressure to liquid crystalline phospholipid bilayers increases chain segment orientational order and thus chain extension. By using pressure to perturb chain order in single-component bilayers and bilayers comprising a binary mixture of lipids, it is possible to compare the relative influences of intrinsic lipid properties and collective bilayer properties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 71 2 شماره
صفحات -
تاریخ انتشار 1996